

Preliminary Datasheet v3

#### **Features**

• Frequency range: 25.5 GHz to 27 GHz

Saturated power: 11 W

PAE: 24 %

Output Power Detector

• Available as bare die or package

• Die dimensions: 3.89 x 3.4 mm

Package dimensions: 9.76 x 11.71 x 1.91 mm (including leads)

Package type metal ceramic, hermetic



#### Description

The VRFA0127-SG is a Ka-band integrated high power amplifier MMIC. The MMIC design is compliant with ECSS-Q-ST-30-11C Rev 1 and is manufactured on a technology successfully evaluated for Space use and referenced in the European Preferred Part List. It is built into a high reliability hermetic metal/ceramic package. It is suitable as an output stage amplifier for applications including payload satellite communications, and able to provide support for variable coding modulation (VCM) modes up to 64-APSK at 37.5 dBm of output power; the amplifier may also be operated in a Beacon mode configuration, by reducing the drain voltage to 8-12 V, depending on user requirements. It is fitted with an output power detector for integration into complex transmission systems.

#### **Electrical characteristics**

| Parameter                                  | Cross had           | Value                                                                                              |         |     | l lait |
|--------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------|---------|-----|--------|
|                                            | Symbol              | Min                                                                                                | Min Typ | Max | Unit   |
| Drain Voltage (VCM Mode)                   | $V_{D\_VCM}$        |                                                                                                    | 20      |     | V      |
| Quiescent Drain Current<br>(VCM Mode)      | I <sub>DQ_VCM</sub> |                                                                                                    | 1       |     | А      |
| Thermal Resistance Junction-Case           | R <sub>TH_JC</sub>  |                                                                                                    | 2.8     |     | °C/W   |
| Hermeticity (typical)                      |                     | 10 <sup>-9</sup> Pa·m³/s (10 <sup>-8</sup> ccHe/sec.)<br>at 10 <sup>5</sup> Pa (1atm) differential |         |     |        |
| Temperature (application module baseplate) | T <sub>BP</sub>     | -20                                                                                                | 25      | 50  | °C     |

Note 1: in order to provide a representative operating condition, the temperature used across the datasheet  $T_{BP}$  is the temperature measured with a contact thermocouple located under the DUT, within the copper test fixture baseplate. It is estimated that the thermal resistance between the thermocouple and the package case is 0.4°C/W. Please contact VIPER RF for details on the package mount and test fixture configuration.

Note 2: the performance indicated on the datasheet is obtained with a small impedance adjustment on the PCB at the output of the HPA. Please contact VIPER RF for details of the impedance transformation implementation.

# **VRFA0127-SG**



# 25.5-27 GHz GaN HPA MMIC

Preliminary Datasheet v3

### **Electrical Characteristics**

Operating Conditions: VD = 20 V, IDQ = 100 mA/mm (all stages, at 25 °C),  $T_{BP} = 25 \text{ °C}$ 

| Parameter                                     |                   | Comple al                                |      | Value |       |       |  |
|-----------------------------------------------|-------------------|------------------------------------------|------|-------|-------|-------|--|
|                                               |                   | Symbol                                   | Min  | Тур   | Max   | Unit  |  |
| Frequency Range                               |                   | Δf                                       | 25.5 |       | 27    | GHz   |  |
| Small-Sigr                                    | Small-Signal Gain |                                          |      | 27    |       | dB    |  |
|                                               | P <sub>SAT</sub>  | $A_{P\_PSAT}$                            |      | 14    |       |       |  |
| Power Gain                                    | 1.7 dB back-off   | A <sub>P_1.7_BO</sub>                    |      | 17    |       | dB    |  |
|                                               | 2.9 dB back-off   | A <sub>P_2.9_BO</sub>                    |      | 19    |       |       |  |
| Saturated                                     | P <sub>SAT</sub>  | P <sub>SAT</sub>                         |      | 40.5  |       | dBm   |  |
| VCM Mode                                      | 1.7 dB back-off   | P <sub>OUT_1.7_BO</sub>                  |      | 38.8  |       |       |  |
| RMS Output<br>Power                           | 2.9 dB back-off   | P <sub>OUT_2.9_BO</sub>                  |      | 37.6  |       | dBm   |  |
| Power Flatness                                | 1.7 dB back-off   | ΔP <sub>OUT_LO_1.7_BO</sub>              |      | ±0.45 | dD.u- |       |  |
| - Low band                                    | 2.9 dB back-off   | ΔP <sub>OUT_LO_2.9_BO</sub>              |      | ±0.5  |       | dBm   |  |
| Power Flatness                                | 1.7 dB back-off   | ΔP <sub>OUT_HI_1.7_BO</sub>              |      | ±0.3  | dBm   |       |  |
| - High band                                   | 2.9 dB back-off   | ΔP <sub>OUT_HI_2.9_BO</sub>              |      | ±0.35 |       | ubili |  |
| Output 3 <sup>rd</sup> -Order Intercept Point |                   | OIP3                                     |      | 39.5  |       | dBm   |  |
| Power-Added P <sub>SAT</sub> VCM mode         |                   | PAE <sub>SAT</sub><br>PAE <sub>VCM</sub> |      | 24    |       | %     |  |
| Input Return Loss (dB)                        |                   | RL <sub>IN</sub>                         |      | -10   |       | 45    |  |
| Output Return Loss (dB)                       |                   | RL <sub>OUT</sub>                        |      | -10   |       | - dB  |  |

# **VRFA0127-SG**



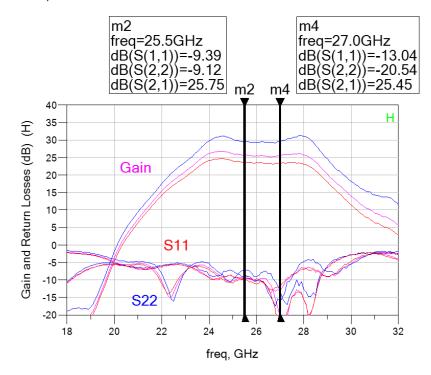
# 25.5-27 GHz GaN HPA MMIC

Preliminary Datasheet v3

### **Electrical Characteristics**

Operating Conditions: VD = 20 V, IDQ = 100 mA/mm (all stages, set at 25 °C),  $T_{BP}$  = 25 °C

| Parameter                                   |                 | Consolt of                         | Value               |      |         |       |
|---------------------------------------------|-----------------|------------------------------------|---------------------|------|---------|-------|
|                                             |                 | Symbol                             | Min                 | Тур  | Max     | Unit  |
|                                             | 1.7 dB back-off | AM-AM <sub>_1.7_BO</sub>           |                     | 0.35 |         | 40/40 |
| AM-to-AM                                    | 2.9 dB back-off | AM-AM <sub>_2.9_BO</sub>           |                     | 0.3  |         | dB/dB |
| Phase Deviation                             | 1.7 dB back-off | ΔΘ <sub>_1.7_BO</sub>              |                     | 13   |         | o     |
| from Linearity                              | 2.9 dB back-off | ΔΘ <sub>_2.9_BO</sub>              |                     | 11   |         |       |
| Group Delay                                 | 1.7 dB back-off | $\Delta t_{G\_LO\_1.7\_BO}$        |                     | 70   |         |       |
| Variation,<br>Lo-band                       | 2.9 dB back-off | $\Delta t_{G\_LO\_2.9\_BO}$        |                     | 60   |         | ps    |
| Group Delay                                 | 1.7 dB back-off | ∆t <sub>G_HI_1.7_BO</sub>          |                     | 33   |         |       |
| Variation,<br>Hi-band                       | 2.9 dB back-off | $\Delta t_{\text{G\_HI\_2.9\_BO}}$ |                     | 26   |         | ps    |
| Operating Sup-<br>ply Current<br>(VCM mode) |                 | I <sub>D</sub>                     |                     | 1.7  |         | А     |
| Die Size                                    |                 |                                    | 3.89 (W) x 4.3 (H)  |      | mm x mm |       |
| Package Dimensions                          |                 |                                    | 9.76 x 11.71 x 1.91 |      | mm x mm |       |



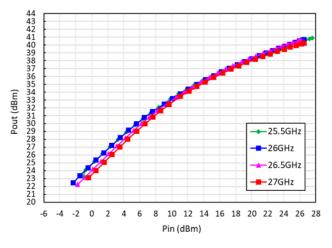

Preliminary Datasheet v3

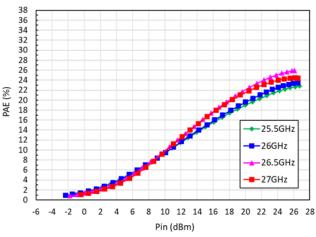
#### **S-Parameters**

Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = PCB connectors The total loss of the PCB test fixture is 1.2dB at 27GHz, with return loss better than -16dB.

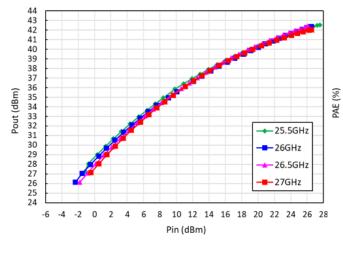
 $T_{BP}$ : Blue = -20°C, Pink = 25°C, Red = 50°C

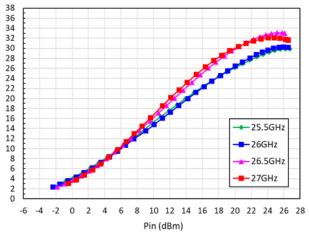




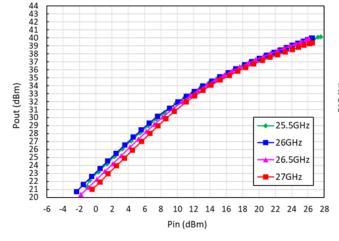


Preliminary Datasheet v3

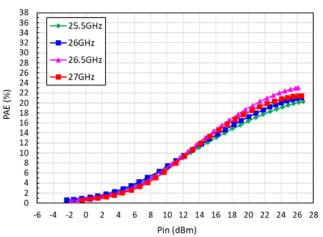
### **Power and Efficiency Characteristics**


Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = Device


 $T_{BP} = 25$ °C:





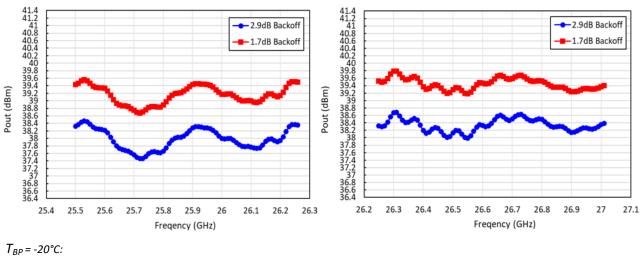


 $T_{BP} = -20$ °C:

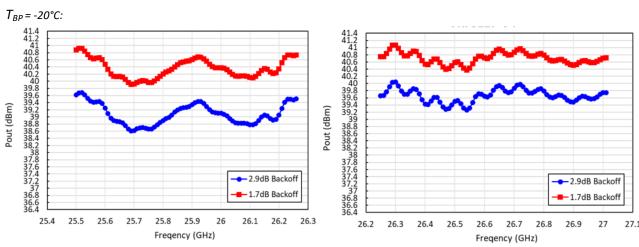


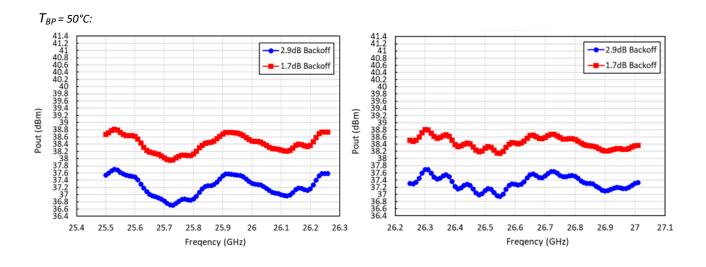










Preliminary Datasheet v3

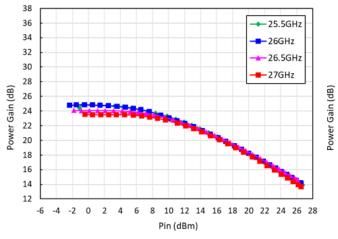
### **Output Power Flatness Characteristics (per sub-band)**

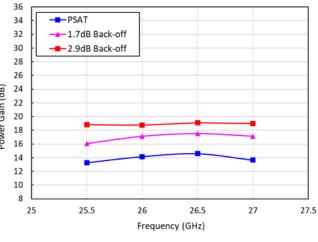
Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = Device  $T_{BP} = 25^{\circ}C$ :

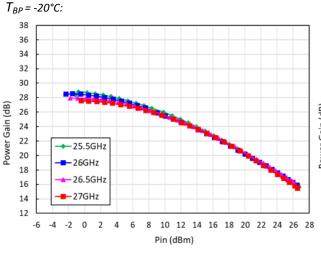


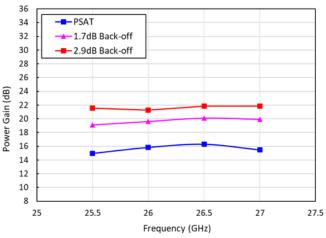


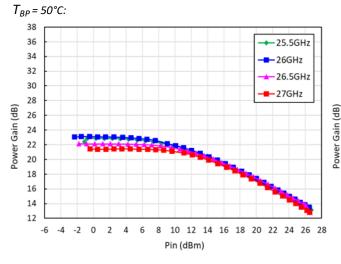


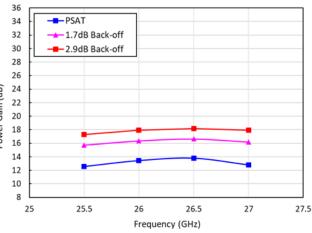




Preliminary Datasheet v3


#### **Power Gain Characteristics**


Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = Device


 $T_{BP} = 25$ °C:

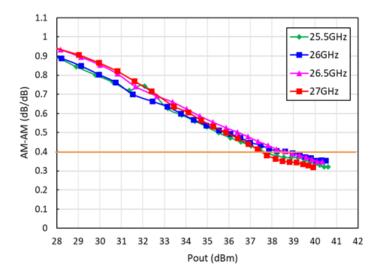




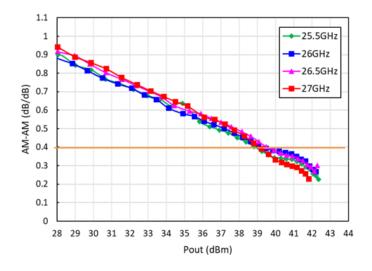




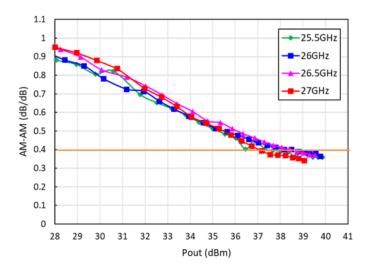






Preliminary Datasheet v3

#### **AM-AM Characteristics**


Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = Device  $T_{BP} = 25^{\circ}C$ :

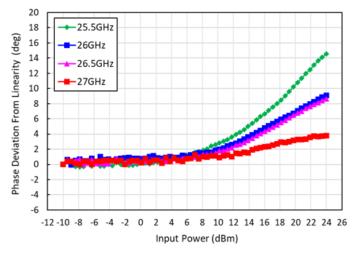


 $T_{BP} = -20^{\circ}C$ :

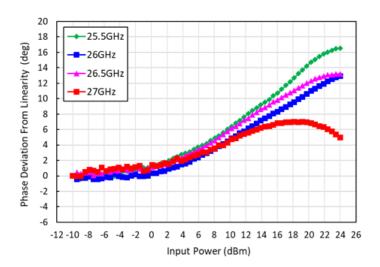


 $T_{BP} = 50$ °C:

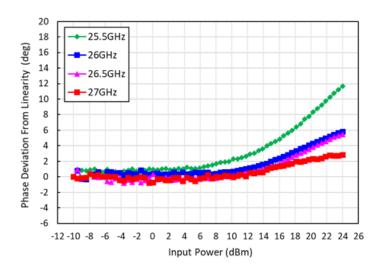



#### All information subject to change without notice




Preliminary Datasheet v3

#### **Phase Deviation Characteristics**


Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = Device  $T_{BP} = 25^{\circ}C$ :



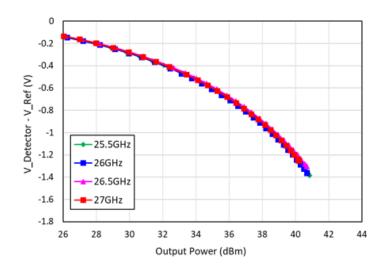
 $T_{BP} = -20$ °C:



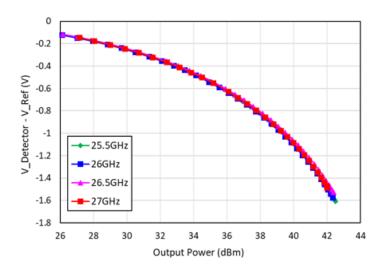
 $T_{BP} = 50$ °C:



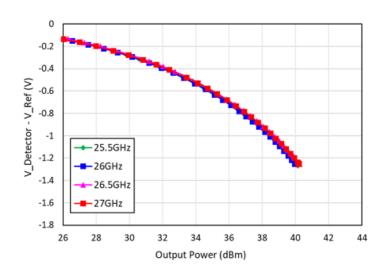
#### All information subject to change without notice




Preliminary Datasheet v3


### **Power Detector Characteristics**

Conditions: VD = 20V, IDQ = 1A, VG = -2.85V, Reference plane = Device


 $T_{BP} = 25$ °C:



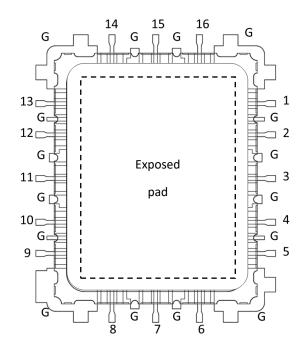
 $T_{BP} = -20$ °C:



 $T_{BP} = 50^{\circ}C$ :






Preliminary Datasheet v3

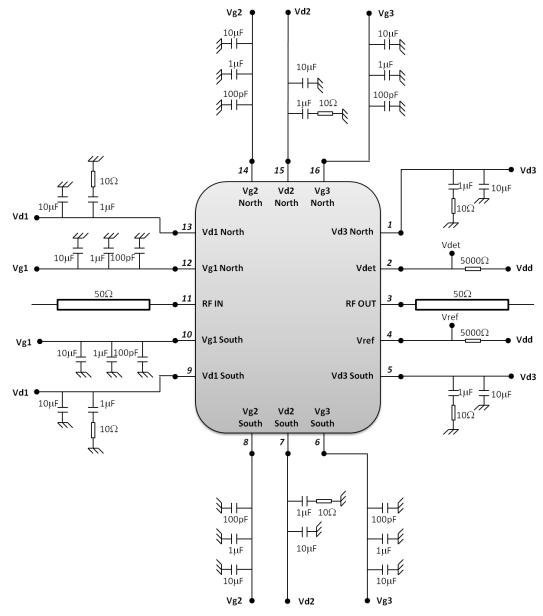
# Recommended Absolute Maximum Ratings [1]

| Parameter                 | Symbol         | Value            | Notes                                              |
|---------------------------|----------------|------------------|----------------------------------------------------|
| Drain bias voltage        | Vd             | 27 V             |                                                    |
| Minimum gate bias voltage | Vg             | -15 V            |                                                    |
| Gate Current              | lg             | 10 mA            |                                                    |
| RF input power            | RFin           | 30 dBm<br>33 dBm | ECSS (50 °C ambient)<br>Commercial (50 °C ambient) |
| Junction Temperature      | T <sub>j</sub> | 160 °C<br>200 °C | ECSS<br>Commercial                                 |
| Storage Temperature       | $T_{storage}$  | -55 to 150 °C    |                                                    |

<sup>[1]</sup> Operation outside these conditions may cause permanent damage to the device. Combination of maximum rating conditions may reduce the values. Device performance at these ratings is not implied.

#### **Device Pinout**




| Pin         | Function | Typical DC<br>Operating Voltage<br>(VCM mode) |
|-------------|----------|-----------------------------------------------|
| 14, 8       | Vg2      | -3 to -2.7 V                                  |
| 15, 7       | Vd2      | 20 V                                          |
| 16, 6       | Vg3      | -3 to -2.7 V                                  |
| 4           | Vref     | 0 to 4.5 V<br>(common mode)                   |
| 1, 5        | Vd3      | 20 V                                          |
| 2           | Vdet     | 0 to 4.5 V<br>(common mode)                   |
| 3           | RF OUT   | DC blocked                                    |
| 9, 13       | Vd1      | 20 V                                          |
| 10, 12      | Vg1      | -3 to -2.7 V                                  |
| 11          | RF IN    | DC blocked                                    |
| G           | Ground   |                                               |
| Exposed Pad | Ground   |                                               |

Note 1: All G pins and features should be connected to the ground net; exposed pad denotes the exposed area under the package, it should also be connected to the ground net and provide a low thermal resistance path. The thermal resistance specified between the transistor junction and the package (table page 1) is referenced to the Exposed Pad.



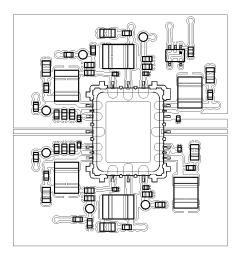
Preliminary Datasheet v3

### **Recommended Application Circuit - Bias Circuits**



- Bias filtering may be amended depending on customer module environment. Please consult the factory if changes are required.
- Vref and Vdet are reference and detected voltages, respectively, as a function of output power. The difference
  of these two voltages can be used for sensing the output power variation. Vdd is a fixed bias voltage equal to
  typically 4.5V

## **Specific Biasing Requirements**


- Nominal bias is obtained by first applying a gate voltage of –2.8V, followed by a drain voltage of 20V (Note sequence). Minor adjustment of the gate voltage may be necessary to obtain the specified quiescent drain current. The RF input signal is applied last.
- Sequence for turning off the device is first disabling the RF signal, second the drain voltage, followed by the gate voltage.



Preliminary Datasheet v3

### **Recommended Application Circuit - PCB Layout**

A generic PCB layout for the package is available from VIPER RF. Please consult the factory for the DXF file template. Please note that appropriate heatsinking is required under the exposed pad of the device, such as a coin inserted in the PCB.



### **Package Information**

Package drawing is available from the factory, please consult VIPER RF for further information.

| Parameter         | Value                    |  |
|-------------------|--------------------------|--|
| Туре              | Leaded                   |  |
| Body              | Al2O3, white             |  |
| Leads             | Fe-Ni-Co Alloy           |  |
| Lid               | Al2O3                    |  |
| Exposed Pad       | Cu-Mo alloy              |  |
| Pin 1             | Index mark, circle, Gold |  |
| Finish (on leads) | Au plating 0.8μm min     |  |
|                   | Ni plating 2μm to 8μm    |  |

### **Recommended Handling and Assembly**

VIPER RF advises the assembly process and reflow profiles should conform to JEDEC J-STD-020.

GaN devices are ESD sensitive and precautions should be observed during storage, handling, assembly and testing.

